

Энергосберегающие тепловые завесы Evolvent Техническая документация, часть 1

одинаковы.

В каждом здании при открытых дверях и воротах происходит непрерывный воздухообмен между уличной и внутренней зонами. В идеальном случае (при отсутствии ветровых нагрузок и утечек в помещении) воздухообмен формируется за счет перепада давления из-за разности температур и, как результат, физического выравнивания давления.
В этом случае объемы входящего и выходящего воздуха в зоне открытых дверей приблизительно

Но очень часто ветровые нагрузки, восходящие и нисходящие потоки воздуха в помещении и утечки в чердачной зоне создают напор, увеличивающий долю входящего наружного воздуха.

В результате большие участки помещения постоянно остаются холодными. Возможность нейтрализовать идущий по полу холодный воздух с помощью обычных теплоносителей практически исключена.

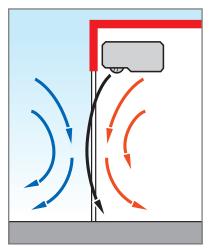


Рис. 2

Принцип действия установки Evolvent

Задача тепловой завесы Evolvent заключается в том, чтобы противодействовать потоку холодного воздуха (К) во входной зоне встречным потоком (Н) с таким же объемом, скоростью, температурой и импульсом. Струя тепловой завесы (R) складывается из необходимых горизонтальных (Н) и вертикальных (V) компонентов (рис. 3). Холодный воздух или проникающий с улицы воздух, захватываемый воздушной струей, должен быть прогрет хотя бы до комнатной температуры (чем уже инжекция и выше экранирующий эффект тепловой завесы, тем ниже необходимые отопительные нагрузки). Правильный выбор соответствующих типов позволит найти приемлемое решение для любой входной группы. На рис. 3 показано, что для величины Н кроме физических характеристик большое значение имеет по возможности постоянная и дальнобойная струя воздуха с хорошо регулируемым выпускным

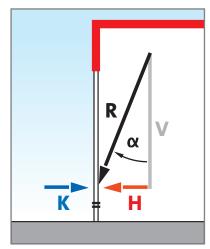
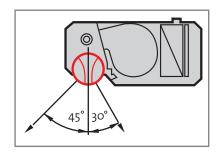
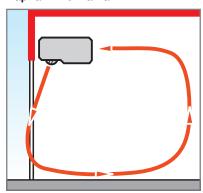
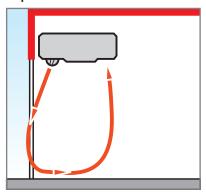



Рис. 3

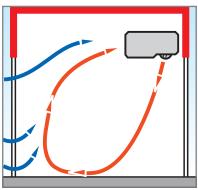
Преимущества воздушной втулки


- Оптимальный контроль подаваемого объема воздуха (скорость вращения, ширина щели)
- Лучшее распределение воздуха
- Обеспечение большей дальности выброса воздуха (без помех направляющих пластин)
- Оптимальная настройка выпускного угла (практически без потерь до 45°)

Тепловая завеса Evolvent обеспечивает оптимальное экранирование воздуха при минимальных затратах энергии, управляя при этом выпускным углом α, воздушным потоком **R** и скоростью **V** настолько точно, что в результате в качестве встречного импульса формируется сила **H**.


углом кондиционированного

воздушного потока.


Вариант монтажа 1

Вариант монтажа 2

Вариант монтажа 3

Вариант монтажа 4

Вариант монтажа 1. Воздушная втулка вращается внутрь, воздухозабор с торцевой стороны из помещения (монтаж IDW*)

Воздушная втулка с учетом локальных условий развивает различную глубину проникновения воздуха в помещение. Данный вариант предельно компактен и требует минимальных затрат энергии, так как используется только воздух помещения.

Форма применения:

небольшие и средние установки.

Назначение:

- при выравнивании давления или при избыточном давлении (например, системы кондиционирования воздуха)
- при средней ветровой нагрузке
- в закрытых, практически защищенных от ветра рядах магазинов или в тамбурах

Вариант монтажа 3. Воздушная втулка настроена наружу, воздухозабор с торцевой стороны, направленный наружу (монтаж в тамбуре на внутренней двери)

Воздушная втулка направлена против проникающего в помещение наружного воздуха. За счет захватывания наружного воздуха и, как следствие, снижения перепада давлений устройство обладает значительно большей экранирующей мощностью.

Конструкция предельно компактная. Форма применения:

отдельные устройства и установки различной ширины и с различным расходом воздуха в тамбурных конструкциях.

Назначение:

- при низком давлении и расположенных напротив друг друга входных группах
- при любых ветровых нагрузках
- при неудачном расположении магазинов

Вариант монтажа 2. Воздушная втулка вращается внутрь, воздухозабор снизу из помещения (монтаж IDW*)

Глубина проникновения воздуха в помещение значительно меньше, устройство дополнительно оснащено воздухозаборной камерой. Форма применения:

отдельные устройства и установки различной ширины и с более высоким расходом воздуха.

Назначение:

- при умеренных и средних ветровых нагрузках;
- при незащищенном расположении

Вариант монтажа 4. Воздушная втулка вращается наружу, воздухозабор снизу, направленный наружу(монтаж ADW**)

Этот тип практически не создает циркуляции в помещении и обладает значительно более высокой экранирующей мощностью за счет захватывания наружного воздуха и, как следствие, снижения перепада давления.

Вращение в сторону улицы противодействует проникающему в помещение холодному воздуху. Данный тип из-за конструктивных особенностей имеет несколько большие размеры и требует более значительных затрат энергии, так как входная температура, как правило, ниже.

Форма применения:

отдельные устройства и установки различной ширины и с различным расходом воздуха.

Назначение:

- при выравнивании давления или низком давлении (например, при большом количестве этажей)
- при любых ветровых нагрузках
- при неудачном расположении магазинов.
- IDW: втулка с вращением внутрь
- **ADW:** втулка с вращением наружу

4 · Энергосберегающие тепловые завесы Teddington Evolvent – описание продукта, область применения и преимущества.

EVOLVENT

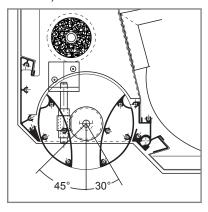
Evolvent – это энергосберегающая тепловая завеса с запатентованной сопловой системой

Большой диапазон регулировки без потерь (45°) выходного угла обеспечивает более высокую экранирующую мощность при низком уровне шума.

В сравнении с обычными устройствами Evolvent является высоко эффективным устройством: для обеспечения мощности обычных устройств Evolvent затрачивает энергии на 40 % меньше!

Самонесущая конструкция
Evolvent состоит из алюминиевых профилей и стальных листов с покрытием и защитной пленкой.
Эстетичное по форме устройство поставляется серийно белого цвета (RAL 9010), опционально возможна поставка других цветов. Видимая часть конструкции не имеет винтовых и заклепочных соединений. Боковые крышки соответствуют по форме и цвету корпусу и образуют с ним одно гармоничное целое.

Подвод тепла расположен стандартно по направлению воздуха вверху справа.


Область применения

Evolvent с воздухозабором с торцевой и нижней стороны предназначен для подвесного монтажа в видимой зоне. При этом соответствующие типы устройства могут также монтироваться и подвесных потолках.

Преимущества по сравнению с обычными устройствами

- Меньший расход энергии при одинаковой мощности
- Намного лучшие характеристики воздушной завесы для высокой экранирующей мощности
- Беспроблемная адаптация к погодным условиям за счет юстировки угла атаки, объема воздуха и выходной температуры
- Высокая совместимость при монтаже (подключение к различным сетям горячего водоснабжения за счет универсальных тепловых регистров большого объема, настенный и потолочный монтаж за счет подвесных систем). Заклепки М10 для простого настенного и потолочного монтажа.

- Низкий уровень шума
- Современные компаундные материалы (алюминий и листовая сталь) без видимых винтовых/заклепочных соединений
- Эффектный дизайн в различной цветовой гамме
- Простые диаграммы расчетов для быстрого выбора тепловой завесы
- Встроенная серийная защита двигателя
- Удобное обслуживание (откидная нижняя крышка для удобного доступа ко всем узлам, в том числе и для смены фильтра EU2; кассета с фильтром при открытой сервисной крышке вытягивается вниз)

Технически данные Evolvent, типы 1, 2 и 3

Типоразмер	Evolvent, тип 1					Evolvent, тип 2					Evolvent, тип 3				
Размеры															
высота [m]	2,75	2,75	2,75	2,75	2,75	3,25	3,25	3,25	3,25	3,25	4,0	4,0	4,0	4,0	4,0
длина [cm]	100	150	200	250	300	100	150	200	250	300	100	150	200	250	300
Объем воздуха															
вентилятор, свободное нагнетание [m³/h]	1900	2800	3800	4800	5700	3600	5400	7200	9000	10800	3800	5400	7600	9700	11400
за напорной камерой [m³/h]	1500	2250	3000	3750	4500	2000	3000	4000	5000	6000	3100	4500	6400	8200	9500
Скорость воздуха															
минимальная ступень [m/s]	3,5	3,5	3,5	3,5	3,5	4,5	4,5	4,5	4,5	4,5	6	6	6	6	6
максимальная ступень [m/s]	10,1	10,1	10,1	10,1	10,1	11,2	11,2	11,2	11,2	11,2	15,25	15,25	15,25	15,25	15,25
Уровень шума															
минимальная ступень [dB(A)]	40	41	41	41	42	41	43	44	45	46	50	51	52	52	53
максимальная ступень [dB(A)]	54	56	58	60	61	54	56	58	60	62	57	59	60	61	62
Тепловая мощность при входящем воздухе 20°C															
горячее водоснабжение 80/60°C, max 50°C [kW]	14,9	25,4	34	42,3	50,8	19,9	33	45,3	56,8	68,1	30,8	47,7	70	88,7	90,5
при ТІа 43°С [kW]	11,8	17,7	23,6	29,5	35,4	15,8	23,8	31,6	39,6	47,5	24,4	35,4	50,4	64	75
горячее водоснабжение 70/50°C, max 42°C [kW]	11,3	19,2	25,6	32	38,5	15,5	25,5	34	42	51	23,3	35,4	48,2	58,2	81
при TLa 37°C [kW]	8,7	13	17,4	21,8	26,2	11,7	17,6	23,3	29,3	35,1	18	26,2	37,2	47,1	56
горячее водоснабжение 55/45°C, max 37°C [kW]	8,7	14,6	19,5	24,3	29,3	11,7	18,6	26	32,7	39,2	18	24,6	37,2	47,1	56
при Тla 33°C [kW]	6,7	10	13,4	16,7	20	8,9	13,5	17,8	22,4	26,9	13,8	20	28,5	36	42
Расход при Tla max.															
горячее водоснабжение 80/60°C [m³/h]	0,66	1,12	1,49	1,86	2,23	0,86	1,48	1,98	2,48	2,99	1,37	2,09	3,10	3,60	4,00
горячее водоснабжение 70/50°C [m³/h]	0,49	0,84	1,12	1,40	1,69	0,68	1,15	1,51	1,87	2,27	1,01	1,55	2,12	2,56	3,53
горячее водоснабжение 55/45°C [m³/h]	0,76	1,28	1,70	2,12	2,56	1,01	1,62	2,27	2,84	3,42	1,58	2,16	3,24	4,32	5,04
Гидравлическое сопротивление при труб Tla max.															
горячее водоснабжение 80/60°C [kPa]	8,5	5	5	7,3	7	3	10,5	8,9	9	10	10	7	11,5	15,5	13,5
горячее водоснабжение 70/50°C [kPa]	6	3	3	4,5	4	2	7	5,5	5,5	6	6	4	6	7	11
горячее водоснабжение 55/45°C [kPa]	12	7	6	10	9	4,5	13,5	12	12,5	13,5	13,5	7,5	13	20	22
Подсоединение труб															
подающая труба (дюйм)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
подающая труба Kr2-E (дюйм)	Х	Х	Х	1	1	Х	Х	1	1	1	1	1 W	1 W	1 W	1 W
обратная труба (дюйм)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Электрические характеристи	ки														
[V]	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
[kW]	0,48	0,72	0,96	1,2	1,44	0,58	0,84	1,16	1,42	1,74	0,94	1,88	2,82	3,76	4,7
[A]	2,1	3,15	4,2	5,25	6,3	2,85	4,3	5,7	7,15	8,55	3,6	7,2	10,8	14,4	18
Электрический регистр (трех	ступенч	атый, 40	00 В, 3 ф	азы, 50	Гц)										
ступень 1 [kW]	3	4,5	6	6	9	3	6	6	12	12	6	9	12	12	12
ступень 2 [kW]	6	9	12	18	18	9	12	18	18	24	12	18	24	24	24
ступень 3 [kW]	9	13,5	18	24	27	12	18	24	30	36	18	27	36	36	36
Вес (около)															
вариант "S" [kg]	45	60	86	95	120	50	75	100	120	140	100	140	160	180	200
вариант "U"/ "UDB" [kg]	50	65	88	110	135	55	85	110	140	160	120	170	195	220	240

Право на технические изменения сохраняется.